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Comparing the star product defined by Takhtajan on the Poisson–Lie groupGL(2) and
any star product calculated from the Kontsevich’s graphs (any “K-star product”) on the
same group, we show, by direct computation, that the Takhtajan star product onGL(2)
can’t be written as a K-star product.
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1. INTRODUCTION

In recent years great progress was made in developing new approach and
deriving exact result in deformation of different groups and algebras. Each of
these deformation theories is not independent of the others.

In fact, since Kontsevich’s well-known preprint (Kontsevich, q-alg/9709040),
in which he gives a universal construction of a star product onRd endowed with an
arbitrary Poisson structure, several authors tempted to bring this approach closer to
others already existing, let us cite, for instance, Arnalet al.(1999) and Dito (1999)
who give by two different manners an equivalence between the Kontsevich and
Gutt (1983) star product on the dual of Lie algebra, and Kathotia (q-alg/9811174)
and Shoikhet (q-alg/9903036) who related the Kontsevich formula to Campbell–
Baker–Hausdorff’s one on the dual of Lie algebra.

The starting point of the present idea is the Drinfeld universal approach to
construct quantum groups (Drinfeld, 1986). This mathematical structure arises
in particular from quantization of some Poisson bracket on “usual” Lie groups
obtained from a classicalr -matrix satisfying the Yang Baxter Equation. Here we
tempt to eliminate the relation between the star product construct by Takhtajan
(basing on Drinfeld’s work), on the particular Lie groupGL(2) endowed with
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a certainr -matrix, which satisfies the modified Yang Baxter Equation, and the
star product constructed on this Poisson–Lie group from the Kontsevich’s graphs
(“K-star product”) either onGL(2) view as an open subset ofR4 or on the domain
of an exponential chart near the origin. By a direct computation, we show that the
Takhtajan star product cannot be written as a K-star product.

This paper is organized as follows. The second section is devoted to a review
of basic definitions of the quantization of Poisson–Lie group. The third section
introduces the Kontsevich construction, in Section 4 we give a generalization of
this construction. Then we give the quantization of the particular Poisson–Lie
groupGL(2) in the fifth section. Finally, we get our main result by comparing
the two star product on an “ordinary” and an “exponential” chart in the three last
sections.

2. USUAL QUANTIZATION OF POISSON–LIE GROUP

Let us first recall the aim of the construction of quantum groups by Drinfeld
(1986) and Takhtajan (1989). LetG be a Lie group with Lie algebrag, we denote
by (Xi ) a basis ofg andU (g) the universal enveloping algebra ofg. If r ∈ 32g,
we consider the elementsr 12, r 13, r 23 of U (g)⊗U (g)⊗U (g) definded by

r 12 = r i j Xi ⊗ X j ⊗ 1

r 13 = r i j Xi ⊗ 1⊗ X j

r 23 = r i j 1⊗ Xi ⊗ X j

wherer = r i j Xi ⊗ X j . We say thatr satisfies the modified Classical Yang-Baxter
Equation (CYBE) if

[r 12, r 13] + [r 12, r 23] + [r 13, r 23] = I123, I123 ∈ 33g (1)

and

[ I123, 1⊗ 1⊗ X + 1⊗ X ⊗ 1+ X ⊗ 1⊗ 1] = 0 ∀X ∈ g (2)

(here the bracket is the commutator in the associative algebraU (g)⊗U (g)⊗
U (g)). Such an element is called ar -matrix.

To eachr , we associate a Poisson structure onG by putting

{ϕ, ψ} = r i j
[
X`

i (ϕ)X`
j (ψ)− Xr

i (ϕ)Xr
j (ψ)

]
ϕ, ψ ∈ C∞(G) (3)

whereX`
i (resp. Xr

j ) are the left-invariant (resp. right-invariant) vector fields onG
corresponding toXi (resp. X j ).

Definition 1(Poisson–Lie group). A Poisson–Lie group is a Lie groupG endowed
with a Poisson structure{ , }associated to ar -matrix satisfying the modified CYBE.
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The quantization of a Poisson–Lie group (G, { , }) is a deformation of the
commutative algebraC∞(G) which turns it to a new noncommutative algebra
C∞(G)[[ t ]], wheret is a deformation parameter. The algebraC∞(G)[[ t ]] as a vector
space coincides withC∞(G), but has a new product∗ called a star product.

Definition 2(Star product). A star product on a Poisson manifold is a map:

∗ : C∞(G)⊗ C∞(G)→ C∞(G)[[ t ]]

ϕ ∗ ψ = ϕ · ψ +
∑
i=1

Ci (ϕ, ψ)t i

such that, for allϕ, ψ, χ ∈ C∞(G)

(1) Ci is a bidifferential operator onC∞(G),
(2) ϕ ∗ 1= 1 ∗ ϕ = ϕ,
(3) {ϕ, ψ} = limt→0

1
t (ϕ ∗ ψ − ψ ∗ ϕ), and

(4) (ϕ ∗ ψ) ∗ χ = ϕ ∗ (ψ ∗ χ ).

SinceG is a group, there is a naturel comultiplication1 onC∞(G):

1(ϕ)(x, y) = ϕ(xy) (ϕ ∈ C∞(G), x, y ∈ G).

A star product preserving1, i.e., such that

1(ϕ ∗ ψ) = 1(ϕ) ∗1(ψ) (4)

where∗ is naturally extended toC∞(G)⊗ C∞(G) and was built by Drinfeld
(1986) and Takhtajan (1989) in a purely algebraic way. They first look for a formal
elementF ∈ U (g)⊗U (g)[[ t ]] such that the product

ϕ ∗ ψ = (F−1)r (F)`(ϕ ⊗ ψ) (5)

is a star product. And the associativity axiom looks

F(X + Y, Z)F(X, Y) = α(X, Y, Z)F(X, Y + Z)F(Y, Z) (6)

whereα(X, Y, Z) ∈ U (g)⊗U (g)⊗U (g)[[ t ]] is G-invariant:

(α, 1⊗ 1⊗ X + 1⊗ X ⊗ 1+ X ⊗ 1⊗ 1)= 0 ∀X ∈ g. (7)

In order to have this, we need that

F = 1− t

2
r +

∑
n≥2

Fntn

and

F(X, 0)= F(0, Y) = 1;

this implies thatα has the following form:

α = 1+ t2α2+ · · ·
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with

Alt(α2) = −4I123.

Here Alt stands for the alternation, i.e.,

Alt(α2)(X, Y, Z) = α2(X, Y, Z)− α2(Y, X, Z)+ α2(Y, Z, X)

−α2(Z, Y, X)+ α2(Z, X, Y)− α2(X, Z, Y)

and

α(X, Y, Z)α(X, Y + Z, U )α(Y, Z, U ) = α(X + Y, Z, U )α(X, Y, Z +U ).

An explicit solution forGL(2) will be given later.

3. KONTSEVICH’S STAR PRODUCT ON Rd

In order to construct a star product on any Poisson manifold, M. Kontsevich
built first such a star product for any Poisson structure3 on a flat spaceRd with
a given system of coordinates.

He considers a setGn,m of graphs0 with two kinds of vertices:n aerial
verticesp1, p2, . . . , pn andm terrestrial verticesq1 < q2 < · · · < qm. From each
aerial vertexpi , two edges (arrows)Eai are starting, they end at any different
vertices (a) distincts from pi (i.e. there are not parallel multiple edges either
“small” loop); on the edges, we fix the lexicographic ordering, we associate to the
graph0 anm-differential operator:

B0(3⊗3⊗3)(ϕ1, ϕ2, . . . , ϕm)

=
∑

Dp13
i1i2···i k1
1 · · · Dpn3

i k1+···kn−1+1···i k1+···kn
n Dq1ϕ1· · ·Dqmϕm (8)

whereDa is the operator:

Da =
∏

l ,edge(l )=.Ea
∂i l .

Kontsevich looks for a star product of the form

ϕ ∗ ψ = ϕ · ψ +
∑
n≥1

tn
∑
0∈Gn,2

a0B0(3,3, . . . ,3)(ϕ ⊗ ψ) (9)

wherea0 is a constant. An explicit universal choice of thea0 is given by Kontsevich
(q-alg/9709040),a0 is the integral of a certain formω0 defined from0 on a
configuration spaceC+n,2. With this choice for any Poisson structure3, the star
product of Kontsevich satisfies the conditions (1), (2), (3), and (4) of the preceding
definition.
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4. GENERALIZATION OF THE KONTSEVICH CONSTRUCTION

We first generalize the construction of Kontsevich onRd. Let us consider now
graphs withn aerial verticesp1, p2, . . . , pm andm terrestrial verticesq1, q2, . . . ,
qm and two edges starting from each aerial vertexpi and ending at any vertex (even
possibly inpi itself) without any double edge.

Since we need property (2) of Definition 2 for our star product, we restrict
ourselves to graphs for whichB0(1,ϕ) = B0(ϕ, 1)= 0, i.e., to graphs such that,
for any terrestrial vertexqj , at least one edge is ending. Let us denote byG̃n,m the
set of such graphs.

Definition 3 (K-star product). A K-star product onRd is a star product of the
form:

ϕ ∗ ψ = ϕ · ψ +
∑
n≥1

tn
∑
0∈G̃n,2

a0B0(3,3, . . . ,3)(ϕ ⊗ ψ)

wherea0 is a constant.

Remark. Kontsevich needs to eliminate the “small loops”pi Epi in order to define
the formω0, but he considers such a generalization for linear3 in Kontsevich
(q-alg/9709040).

Up to the ordering of the aerial vertices, it is easy to consider all elements
of G̃2,2:

Lemma (Description ofG̃2,2). The setG̃2,2 contains exactly 10 graphs. (See
Fig. 1.)

If we restrict ourselves to a symmetricC2 in our star product, we have only
to consider six graphs or linear combination of graphs (see Fig. 2).

Fig. 1. TheG̃2,2 elements.
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Fig. 2. The symmetric elements of̃G2,2.

5. THE QUANTUM GROUP GL(2)

Let us now consider the particular case of Lie groupG = GL(2)⊂ R4. We
endowGL(2) with a Poisson–Lie structure by defining ar -matrixr̃ , which verifies
the modified CYBE:

r̃ = X+ ⊗ X− − X− ⊗ X+ ∈ 32g

where

X+ =
(

0 1

0 0

)
and X− =

(
0 0

1 0

)
.

So the corresponding Poisson bracket onGL(2) has the following form:

{ϕ, ψ} = X`
+(ϕ)X`

−(ψ)− X`
−(ϕ)X`

+(ψ)− Xr
+(ϕ)Xr

−(ψ)+ Xr
−(ϕ)Xr

+(ψ).

We consider the matrixT = (ti j )i , j=1,2 of coordinate functions onGL(2), i.e.,
the functionsti j (g) = gi j , where, forg ∈ G, we denote bygi j its matrix elements.
Let us put

T =
(

t11 t12

t21 t22

)
=
(

a b

c d

)
.

Left and Right actions ofG on matrix coordinates onG are given by(
X`ti j

)
(g) = (gX)i j =

∑
k

tik(g)Xkj

(10)(
Xr ti j

)
(g) = (Xg)i j =

∑
k

Xiktk j (g)

with these notations, the Poisson bracket looks like

3ab = {a, b} = ab, 3ac = {a, c} = ac, 3bc = {b, c} = 0,

3bd = {b, d} = bd, 3cd = {c, d} = cd, 3ad = {a, d} = 2bc.
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These relations define completely the Poisson–Lie groupGL(2) with r -matrix r̃
since anyϕ ∈ C∞(G) can be approximated by polynomial functions ina, b, c, d.

Now, what about the quantization of this Poisson–Lie group, i.e., how looks
the star product in terms of coordinate functions? Takhtajan (1989) gives an elegant
form of his star product (5):

T1 ∗ T2 = F−1T ⊗ TF (11)

with

T1 = T ⊗ I

T2 = I ⊗ T.

A solution of Eq. (6) forGL(2) was given by

F = e
−t P

2


√

q 0 0 0

0 u−1 0 0

0 v u 0

0 0 0
√

q

 (12)

whereq = et , u =
√

2
q+q−1 , v = q−q−1√

2(q+q−1)
, andP is the permutation operator.

We shall call the corresponding star product the Takhtajan star product and
denote it by∗T .

Proposition 1 (Computation of∗T ) (Takhtajan, 1989). Taking the form (12) of
element F, we obtain the following relations:

a ∗T a = a2, b ∗T b = b2, c ∗T c = c2, d ∗T d = d2

a ∗T b =
√

2

1+ q−2
ab, a ∗T c =

√
2

1+ q−2
ac, b ∗T c = 2

q + q−1
bc

b ∗T d =
√

2

1+ q−2
bd, c ∗T d =

√
2

1+ q−2
cd, a ∗T d = ad+ q − q−1

q + q−1
bc.

(13)

6. COMPARING STAR PRODUCT

We want now to compare the Takhtajan star product and the K-star product.
We shall compare these two sorts of star products on a chart domain, i.e., first we
look atGL(2) as an open subset ofR4:

GL(2)=
{

T =
(

a b

c d

)
, ad− bc 6= 0

}
⊂ R4 = {(a, b, c, d)}
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we call this chart the “ordinary chart.” Then we look at the expontial mapping:

exp :g`(2)=
{

X =
(
α β

γ δ

)
, ‖X‖ < 2π

}
→ {eX} ⊂ GL(2)

we call this chart the “exponential chart.”
The Takhtajan star product∗T can be written on the ordinary or exponential

chart as

ϕ ∗T ψ = ϕ · ψ + tC1(ϕ, ψ)+ t2CT (ϕ, ψ)+ · · ·
with CT symmetric.
Suppose that∗T is a K-star product, thenCT has the form

CT = a01 B01(3,3)+ a02 B02(3,3)+ · · · + a06 B06(3,3).

Computing Eq. (13), we find thus relations between thea0i and it is possible to
prove there is no solution for these relations. We shall apply this method for the
exponential chart.

Another possible way is to use the graph cohomology (Arnal and Masmoudi,
2002). If we write the Kontsevich star product

ϕ ∗K ψ = ϕ · ψ + tC1(ϕ, ψ)+ t2CK (ϕ, ψ)+ · · ·
Suppose that∗T is a K-star product, thenCK − CT being symmetric is a cobound-
ary δT with T =∑n=1,2 tn

∑
0∈G̃n,1

K0B0(3,3). We can computeT and prove
there is no solution again. We shall apply this method for the ordinary chart.

7. IN THE ORDINARY CHART

On the Poisson–Lie groupGL(2)⊂ R4 we consider the chartT = ( a b
c d ), in

this case we have

ϕ ∗K ψ = ϕ · ψ + tC1(ϕ, ψ)+ t2CK (ϕ, ψ)+ · · ·
ϕ ∗T ψ = ϕ · ψ + tC1(ϕ, ψ)+ t2CT (ϕ, ψ)+ · · ·

whereCK (CT ) is the Kontsevich (the Takhtajan) bidifferential operator.
Since3 is quadratic, ifϕ, ψ are coordinate functions, each term of these star

products is quadratic. NowCK andCT are symmetrics.
If we assume that we can writeCT as

CT =
∑
0∈G̃2,2

a0B0(3,3)

then CK − CT is a Hochschild cocycle which is symmetric and vanishing on
constants, i.e., a coboundary, and there exists differential operators vanishing on
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constantsT1, T2 such that

Tϕ = ϕ + tT1ϕ + t2T2ϕ (14)

satisfies

T(ϕ ∗K ψ) = T(ϕ) ∗T T(ψ) (15)

and then

T = Id + t
∑

i j

K1∂ j3
i j ∂i + t2

∑
i1i2 j1 j2

K2∂ j 23
i2 j2∂ j13

i1 j1∂i1∂i2

+ t2
∑

i1i2 j1 j2

K33
i2 j2∂ j1∂ j23

i1 j1∂i1∂i2 + t2
∑

i1i2 j1 j2

K4∂ j13
i2 j2∂ j23

i1 j1∂i1∂i2

+ t2
∑

i1i2 j1 j2

K5∂i13
i1 j1∂ j2∂ j13

i2 j2∂i2 + t2
∑

i1i2 j1 j2

K6∂ j2∂ j13
i1 j1∂i13

i2 j2∂i2

(16)

with the 4-upple of indexes (i1, i2, j1, j2) ∈ {a, b, c, d}4. So the equivalence be-
tween the two star products∗T and∗K∑

p+q=2

Tp(CK )q(ϕ, ψ) =
∑

p+q+r=2

(CT )p(Tqϕ, Trψ)



P1: GFU/ P2: FOM

International Journal of Theoretical Physics [ijtp] pp442-ijtp-370729 April 9, 2002 17:58 Style file version Nov. 19th, 1999

746 Bel Baraka

gives the following system of equations:

2K3+ K4 = 7
48

K3+ 2K4 = 1
6

K4− 1
12 = 0

K4− 1
12 = − 1

8

K 2
1 + 2K2+ K4 = 1

12.

(17)

This system has no solution.

Proposition 2 (Comparing on ordinary chart). In the ordinary chart the
Takhtajan star product can’t be written as a K-star product.

8. IN THE EXPONENTIAL CHART

Let us consider again the Poisson–Lie groupGL(2), but now, with an expo-
nential chartX = ( α β

γ δ ) such thatT = ( a b
c d ) = eX.

In this case we have
a = 1+ α + α2+βγ

2 + α3+βγα+βγ δ
6 + · · ·

b = β + βα+βδ
2 + β2γ+βα2+βδ2+βαδ

6 + · · ·
c = γ + γα+γ δ

2 + βγ 2+γα2+γ δ2+γαδ
6 + · · ·

d = 1+ δ + δ2+βγ
2 + δ3+βγ δ+βγα

6 + · · ·

(18)

and the Poisson structures up to third order looks as

3αβ = β + 1
3β

2γ + 1
3βα

2+ · · ·
3αγ = γ + 1

3βγ
2+ 1

3γα
2+ · · ·

3βδ = β + 1
3β

2γ + 1
3βδ

2+ · · ·
3γδ = γ + 1

3βγ
2+ 1

3γ δ
2+ · · ·

3βγ = 0

3αδ = βγα + βγ δ + · · ·

(19)

If we try to write the Takhtajan star product as a K-star product, we have to consider
all symmetric graphs01, 02, 03, 04, 05, and06, described in lemma (Section 4).

We attribute respectly the weightsa01, a02, a03, a04, a05, anda06 to graphs
01, 02, 03, 04, 05, and06 such that the product

ϕ ∗ ψ =
∑
n=0

tn
∑
0∈G̃n,2

a0B0(3, . . . ,3)(ϕ ⊗ ψ)

is associative.
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So we calculate the operator∑
i1i2 j1 j2

a01∂ j13
i2 j2∂ j23

i1 j1∂i1 ⊗ ∂i2 +
∑

i1i2 j1 j2

a02∂ j13
i1 j1∂ j23

i2 j2∂i1 ⊗ ∂i2

+
∑

i1i2 j1 j2

a033
i1 j1∂ j1∂ j23

i2 j2
(
∂i1 ⊗ ∂i2 + ∂i2 ⊗ ∂i1

)
+

∑
i1i2 j1 j2

a043
i1 j13i2 j2∂i2∂i1 ⊗ ∂ j2∂ j1

+
∑

i1i2 j1 j2

a053
i1 j1∂ j13

i2 j2
(
∂i2∂i1 ⊗ ∂ j2 + ∂ j2 ⊗ ∂i2∂i1

)
+

∑
i1i2 j1 j2

a063
i2 j2∂ j13

i1 j1
(
∂i2∂i1 ⊗ ∂ j2 + ∂ j2 ⊗ ∂i2∂i1

)
(20)

associated to the graphs of (Fig. 2), on each pair (ϕ, ψ) of functionsϕ, ψ ∈
{a, b, c, d} and 4-upple of indexes (i1, i2, j1, j2,) ∈ {α, β, δ, γ }4. Then the van-
ishing of the bidifferential operatorCK − CT gives this system of equations:



a01 + 2a02 = 0

10a01 + 32a02 + 28a03 − 6a04 − 8a05 − 16a06 = 0

8a03 + a05 + 4a06 = 0

8a03 + 2a05 + 4a06 = − 3
2

a05 + 2a06 = − 1
8

−a01 − 2a02 − 6a03 + 4a05 + 8a06 = − 9
16

−a01 + 2a02 + 2a03 + 2a05 + 4a06 = − 3
16

(21)

which is a system with no solution.
For instance let us give the calculation, up to second order, ofCK (a, d) as an

example from which we obtain the first and second equations.
We determineB0n(a, d) for n = 1, 2,. . . , 6. We get for (see Fig. 3) the

functions:

B01(a, d) =
∑

i1i2 j1 j2

∂ j13
i2 j2∂ j23

i1 j1∂ j1a∂i2d

Case 1. {
i1 = α
j1 = β
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Fig. 3. 01.

So if we calculate∂β3i2 j2∂ j23
αβ∂αa∂i2d, with i2, j2 ∈ {α, β, γ , δ}, we get(

∂β3
i2 j2∂ j23

αβ∂αa∂i2d
)

i2 j2=α,β,γ ,δ = −1− α − δ − αδ − 5

6
α2− 5

6
δ2

− 11

6
βγ + 0(2)

Case 2. {
i1 = β
j1 = α

(
∂α3

i2 j2∂ j23
βα∂βa∂i2d

)
i2 j2=α,β,γ ,δ = 0(2)

Case 3. {
i1 = α

(
∂γ3

i2 j2∂ j23
αγ ∂αa∂i2d

)
i2 j2=α,β,γ ,δ

j1 = γ = −1− α − δ − αδ − 5
6α

2− 5
6δ

2− 11
6 βγ + 0(2)

Case 4. {
i1 = γ
j1 = α

(
∂α3

i2 j2∂ j23
γα∂γa∂i2d

)
i2 j2=α,β,γ ,δ = 0(2)

Case 5. {
i1 = β
j1 = δ

(
∂δ3

i2 j2∂ j23
βδ∂βa∂i2d

)
i2 j2=α,β,γ ,δ = 0(2)

Case 6. {
i1 = δ
j1 = β

(
∂β3

i2 j2∂ j23
δβ∂δa∂i2d

)
i2 j2=α,β,γ ,δ = 1

6βγ + 0(2)

Case 7. {
i1 = γ
j1 = δ

(
∂δ3

i2 j2∂ j23
γδ∂γa∂i2d

)
i2 j2=α,β,γ ,δ = 0(2)

Case 8. {
i1 = δ
j1 = γ

(
∂γ3

i2 j2∂ j23
δγ ∂δa∂i2d

)
i2 j2=α,β,γ ,δ = 1

6βγ + 0(2)
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Fig. 4. 02.

Case 9. {
i1 = α
j1 = δ

(
∂δ3

i2 j2∂ j23
αδ∂αa∂i2d

)
i2 j2=α,β,γ ,δ = 0(2)

Case 10. {
i1 = δ
j1 = α

(
∂α3

i2 j2∂ j23
δα∂δa∂i2d

)
i2 j2=α,β,γ ,δ = 0(2)

then we have

B01(a, d) = −2− 2α − 2δ − 2αδ − 5

3
α2− 5

3
δ2− 10

3
βγ + 0(2).

Similarly we calculate (see Fig. 4)

B02(a, d) =
∑

i1i2 j1 j2

∂ j23
i2 j2∂ j13

i1 j1∂i1a∂i2d

thus we have

B02(a, d) = −4− 4α − 4δ − 4αδ − 10

3
α2− 10

3
δ2− 32

3
βγ + 0(2)

and for (see Fig. 5)

B03(a, d) =
∑

i1i2 j1 j2

∂ j2∂ j13
i2 j23i1 j1

(
∂i1a∂i2d + ∂i2a∂i1d

)

Fig. 5. 03.
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Fig. 6. 04.

then we have

B03(a, d) = −28

3
βγ + 0(2)

and (see Fig. 6)

B04(a, d) =
∑

i1i2 j1 j2

3i2 j23i1 j1∂i2∂i1a∂ j2∂ j1d

B04(a, d) = 2βγ + 0(2)

and (see Fig. 7)

B05(a, d) =
∑

i1i2 j1 j2

∂ j13
i2 j23i1 j1

(
∂ j2a∂i2∂i1d + ∂i2∂i1a∂ j2d

)
B05(a, d) = 8

3
βγ + 0(2)

and (see Fig. 8)

B06(a, d) =
∑

i1i2 j1 j2

3i2 j2∂ j13
i1 j1
(
∂i2∂i1a∂ j2d + ∂ j2a∂i2∂i1d

)
B06(a, d) = 16

3
βγ + 0(2).

Fig. 7. 05.
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Fig. 8. 06.

Now considering weightsa01, a02, a03, a04, a05, anda06, we have

CK (a, d) = (−2a01 − 4a02

)+ (−2a01 − 4a02

)
α + (−2a01 − 4a02

)
δ

+ (−2a01 − 4a02

)
αδ +

(
−5

3
a01 −

10

3
a02

)
α2

+
(
−5

3
a01 −

10

3
a02

)
δ2+

(
−10

3
a01 −

32

3
a02 −

28

3
a03

+ 2a04 +
8

3
a05 +

16

3
a06

)
βγ.

In the other hand, we have

CT (a, d) = 0

then we obtain our two first equations. In the same way we obtain the remaining
equations.

Proposition 3 (Comparing on exponential chart). In the exponential chart we
can’t write the Takhtajan star product as a K-star product.
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